翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cauchy–Frobenius lemma : ウィキペディア英語版
Burnside's lemma
Burnside's lemma, sometimes also called Burnside's counting theorem, the Cauchy–Frobenius lemma or the orbit-counting theorem, is a result in group theory which is often useful in taking account of symmetry when counting mathematical objects. Its various eponyms include William Burnside, George Pólya, Augustin Louis Cauchy, and Ferdinand Georg Frobenius. The result is not due to Burnside himself, who merely quotes it in his book 'On the Theory of Groups of Finite Order', attributing it instead to .
In the following, let ''G'' be a finite group that acts on a set ''X''. For each ''g'' in ''G'' let ''Xg'' denote the set of elements in ''X'' that are fixed by ''g'' (also said to be left invariant by ''g''), i.e. ''Xg'' = . Burnside's lemma asserts the following formula for the number of orbits, denoted |''X''/''G''|:
:|X/G| = \frac\sum_|X^g|.
Thus the number of orbits (a natural number or +∞) is equal to the average number of points fixed by an element of ''G'' (which is also a natural number or infinity). If ''G'' is infinite, the division by |''G''| may not be well-defined; in this case the following statement in cardinal arithmetic holds:
:|G| |X/G| = \sum_|X^g|.
== Example application ==
The number of rotationally distinct colourings of the faces of a cube using three colours can be determined from this formula as follows.
Let ''X'' be the set of 36 possible face colour combinations that can be applied to a cube in one particular orientation, and let the rotation group ''G'' of the cube act on ''X'' in the natural manner. Then two elements of ''X'' belong to the same orbit precisely when one is simply a rotation of the other. The number of rotationally distinct colourings is thus the same as the number of orbits and can be found by counting the sizes of the fixed sets for the 24 elements of ''G''.
* one identity element which leaves all 36 elements of ''X'' unchanged
* six 90-degree face rotations, each of which leaves 33 of the elements of ''X'' unchanged
* three 180-degree face rotations, each of which leaves 34 of the elements of ''X'' unchanged
* eight 120-degree vertex rotations, each of which leaves 32 of the elements of ''X'' unchanged
* six 180-degree edge rotations, each of which leaves 33 of the elements of ''X'' unchanged
A detailed examination of these automorphisms may be found
here.
The average fix size is thus
: \frac\left(3^6+6\cdot 3^3 + 3 \cdot 3^4 + 8 \cdot 3^2 + 6 \cdot 3^3 \right) = 57.
Hence there are 57 rotationally distinct colourings of the faces of a cube in three colours. In general, the number of rotationally distinct colorings of the faces of a cube in ''n'' colors is given by
: \frac\left(n^6+3n^4 + 12n^3 + 8n^2\right).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Burnside's lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.